AMC¾ºÈü·ÖÖ§Öڶ࣬Òò´Ë³õ´Î½Ó´¥µÄС»ï°éºÜÈÝÒ׸㲻¶®¾¿¾¹AMC¾ºÈüÄÑÂð¡¢AMC 8¡¢AMC10ºÍ12·Ö±ð½Ó½ü¼¸Äê¼¶µÄѧϰ½ø¶È¡£ÄǽñÌìÎÒÃǾÍÄÃËüÀ´ºÍIBÊýѧÀà±Èһϣ¬Ï£ÍûÄÜÈôó¼Ò¸üÖ±¹ÛµØÀí½â¡£
AMC¾ºÈüÄÑÂð£¿ÓÐÈëÃŵ½½ø½×¶à¸ö³Ì¶È
AMC 8×÷Ϊ±È½ÏÈëÃż¶µÄÊýѧ¾ºÈü£¬ÎÞÂÛ´Ó¹ã¶È»¹ÊÇÉî¶ÈÉ϶¼ÊÇÏà¶ÔµÍµÄ£¬ÓÐIGѧϰ»ù´¡µÄͬѧ£¬¾¹ýÒ»¶¨µÄ¾ºÈüרÏîѵÁ·ºóÈÝÒ×ÉÏÊÖ£¬Ò²»á¶ÔIBÊýѧѧϰÆðµ½¹®¹Ì×÷Óá£
¶øAMC 10ÓëAMC 8Ïà±È£¬ÖªÊ¶¹ã¶ÈºÍÉî¶È¶¼ÓÐËùÌáÉý£¬ËùÒԲμÓAMC 10×îºÃµÄºâÁ¿Ö¸±ê¾ÍÊÇAMC 8µÄ³É¼¨£¬Èç¹û¿ÉÒÔ×ö¶Ô18Ìâ×óÓÒ£¬ÄÇô¼ÌÐø½ø½×AMC 10ÊDZȽϺÏÊʵģ»
AMC 10µÄÉæ¼°µÄ֪ʶ¹ã¶ÈËäÈ»ºÍIB SLÏàËÆ£¬µ«ÊÇÉî¶ÈÉÏÔ¶Ô¶³¬¹ýIB¿ÇÄÚ·¶Î§£¬ËùÒÔ¶ÔIBµ³À´Ëµ£¬±¸¿¼AMC10ÐèÒªÔÚ¾¡¿ìѧÍêIB SLÄÚÈݵĻù´¡ÉÏ£¬ÁíÍâ²¹³äѵÁ·AMC 10Ëù¿¼ºËµÄÊýѧÉî¶È¡£
AMC¾ºÈüÄÑÂð£¿AMC 12ÊǸÃϵÁеÄBOSS£¬Å·¼¸ÀïµÃ¸ß½×ÈüµÄÄѶÈÓëAMC 12ÏàËÆ£¬µ«Éæ¼°µÄ֪ʶ¹ã¶È²»ÈçAMC12£¬ºÍIB HL µÄÄÚÈݲî±ð²»´ó¡£ËùÒÔ£¬ÓÐAMC12ѧϰ»ù´¡µÄͬѧÍêÈ«¿ÉÒÔ¼ÌÐø±¸¿¼Å·¼¸ÀïµÃ¸ß½×°æ£¬ÕâÑùÊÇÈÃ×Ô¼ºËùѧµÄ֪ʶÀûÓõøüºÃÒ»Ìõ¾ºÈü±¸¿¼Â·¾¶¡£
¡¾AMC12ÀúÊ·ÕæÌâ¡ý¡¿
6. The figure below shows line l with a regularinfiniterecurring pattern ofsquares and line segments.
ÏÂͼÏÔʾÁËÖ±Ïß1£¬¸ÃÖ±ÏßÓɹæÔòµÄ¡¢ÎÞÏ޵ġ¢Öظ´³öÏÖµÄÕý·½ÐκÍÏß¶ÎËù×é³ÉµÄͼÐΡ£
How many of the following four kinds ofrigid motion transformations of the plane in which this figure is drawn, other than the identity transformationwill transform this figure into itself?
ÔÚÏÂÃæµÄËÄÖÖ¹ØÓÚ¸ÃͼÐÎËùÔÚÆ½ÃæµÄ¸ÕÐԱ任ÖУ¬Óм¸ÖÖÊdzýÁ˺ãµÈ±ä»»Í⣬Äܹ»°ÑÉÏÊöͼÐα䵽×ÔÉíµÄ?
some rotation around a point ofline lÎ§ÈÆÖ±ÏßAÉϵÄij¸öµãµÄÐýת
some translation in the direction parallel toline eÑØ×ÅÆ½ÐÐÓÚÖ±ÏßAµÄ·½ÏòµÄij¸öÆ½ÒÆ the reflection across line l¹ØÓÚÖ±ÏßAµÄ·´Éä
some reflection across a line perpendicular toline¹ØÓÚijÌõ´¹Ö±ÓÚÖ±ÏßAµÄÖ±Ïߵķ´Éä
(A)0 (B)1 (C)2 (D)3 (E)4
AMC¾ºÈüÄÑÂðÎÊÌâ¾Í½â´ðµ½ÕâÀï¡£½ðɳÌåÓý¹Ù·½Èë¿Ú¾ºÈüÎ廨°ËÃÅ£¬ÏàÐÅ´ó¼ÒÀàËÆµÄÒÉÎÊ»¹Óкܶࡪ¡ª
ÎÒĿǰµÄУÄÚ»ù´¡Êʺϱ¸Èüʲô¾ºÈü£¿
ÎÒµÄѧϰ½ø¶ÈÓ뾺Èü¿¼²ìµãÖ®¼äµÄȱ¿ÚÊÇ£¿
ÎÒÏë³å´ÌµÄ¸ß½×¾ºÈüÊÇ·ñÓÐǰÖþºÈü£¿
Èç¹ûÄãÒ²ÓÐͬ¿îÒÉ»ó»¶ÓËæÊ±µã»÷ÕâÀï×ÉѯÎÒÃÇ
¸ü¶à½ðɳÌåÓý¹Ù·½Èë¿Ú¾ºÈü¹¥ÂÔµã»÷¡ý
2022ϰëÄê½ðɳÌåÓý¹Ù·½Èë¿Ú¾ºÈüʱ¼ä±í,AMC BPHO NECµÈÖØ°õ±ÈÈüÔÚµÈÄã